Historical Risk and Return cost of Capital equity or Realized Return : price in year chr Selling price V a divi-yield - × 100 Po: price now 5 purchasing " · Di: dividands end y:1 $CGY = \frac{P_1 - P_2}{P_0} \times 100$ Capital gain yield العامؤ موالربح الركمابي R = d. Yield / eld + (GY)

Ô 11.2 Historical Risks and 1 correct Question 4, P 11-6 Ξ > Returns of Stocks (similar to) Points: 0 of 1 Close 21 You expect KStreet Co's trade at \$102 per share right after paying a \$2.75 dividend per share in one year. What is the most you would pay \mapsto to buy the stock now if you want to earn at least a return of 10%? P.? $R = \frac{P_1 - P_0 + D_1}{P_0}$ $\frac{102 - P_0 + 2.75}{P_0} \Rightarrow Solve \text{ for } X \Rightarrow P_0 = 95.227$ 10% 0

= 11.2 Historical Risks and Returns of Stocks Cuestion 5, P 11-7 (similar to) 1 correct O Points: 0 of 1 I correct O Points: 0 of 1

The following table contains prices and dividends for a stock. All prices are after the dividend has been paid. If you bought the stock on January 1 and sold it on December 31, what is your realized return? *Hint:* Make sure to round all intermediate calculations to at least five decimal places.

	Price	Dividend	Ð	Realized Return
Jan 1	9.93			•
Mar 31	10.93	0.24		
Jun 30	10.43	0.24		
Sep 30	11.03	0.24		
Dec 31	10.93	0.24		
Step1 : R1 =	$\frac{P_1 - P_0 + 1}{p_0}$		0.93 - 1	9.93+0.24 9.93 9.93
R2 =	10.43-10.0	93		0.0237877

Ð

 \cap

≡	11.2 Historical Risks and Returns of Stocks	Question 7, P 11-14 (similar to) Part 1 of 7	1 correct	ts: 0 of 1	© Close
\mapsto	Using the data in the table to the right, calculate yield and your capital gain from investing in the subanuary 1 to December 31.	tock from Jan 1 Feb 5	Price	- \$0.21	- <u>-</u>
0		May 14 Aug 13 Nov 12 Dec 31	\$39.41 \$43.25	\$0.22 \$0.21 \$0.21 -	
0	$\frac{(step1)}{dy_{1}}; \sqrt{y} = \frac{D1}{P0}$ $\frac{0.21}{31.59} = 0.00664$	(Stepz)		I	
0	$dy_1 = \frac{0.21}{31.59} = 0.00664$	$d, \gamma = ((1 + 0.00664))$.(1+0.006916).(1+0.00717).	(1+0,00 (3))·(1+0))-1
0	$d_{12} = \frac{0.22}{0.006916}$		-		
0	$\frac{31.81}{29.27} = 0.06717$	$Step3 : CG = \frac{p_1 - p_0}{p_0}$			

$\underbrace{(b)}_{0} E(r_p) = 2!.$ $e^{2p} = 0!. \implies e^{p} = 0!.$

Because of diversification portfolio I i V coio